Metrics for Management

Tim Adams
NASA Kennedy Space Center
2015 World Conference
Session M17

Selected Slides For RMA, see pp. 13, 21, & 22

Objectives

- At the conclusion of this Metrics for Management session, you should be able to:
 - Answer the "journalistic questions" about metrics for management.
 - Use these answers to identify and build metrics for your organization.

1

Who should make the metrics?

- You, the manager!
- Why, because...

- Making (not buying) your own metrics:
 - Provides "expert/information power"
 - > Can be revealing...

One reason to do your own metrics

"What is most remarkable is that the mere effort to measure a difficult-to-measure construct can lead to a much deeper understanding and more effective management of that dimension or asset."

Source is Dean Spitzer, author of *Transforming Performance Measurement*, AMACOM, 2007. (Balestracci, D., "Measurement As a Framework for Strategy," Qualitydigest.com, May 08, 2013).

Where should metrics be used?

Metrics are needed:

- With imperfect systems.
- > When desired state is critical.
- When management has a high desire to obtain the desired state.
- Metrics are not needed
 - With perfect or low-risk systems.

Why do metrics?

• To quantitatively characterize the performance gap and to support the decision to...

- Continue as is,
- Make adjustments (changes), or
- Obtain more information to make a risk-informed decision.

Mathematical view of a metric

- In Mathematics, a metric is an abstraction of the notion of distance.
- Not all topologies have a metric space, and not all metric spaces measure distance the same way.

Same 2 points, but different metrics

- In Euclidean geometry, a straight line is the shortest distance between two points.
- In Minkowski (Taxicab) geometry, length uses a different metric or distance function.

1-norm distance
$$=\sum_{i=1}^n |x_i-y_i|$$
 2-norm distance $=\left(\sum_{i=1}^n |x_i-y_i|^2\right)^{1/2}$

Management metric – flow diagram

• A management metric assigns a measure to the performance gap.

Management metric – definition

• A mathematical function that assigns a measure to the "gap" between the output's current state (**c**) and the goal's desired state (**d**).

Math for Metrics – getting started

 Distance functions or metrics could use:

- > d c, c d, or c/d.
 - Order does not change the magnitude or absolute value of the difference.
 - Absolute value of a number is the number without its sign and is denoted |x|. That is, |-x| = x.
 - In Microsoft Excel, use the ABS function.
 - Use c/d since d is the reference state.
 - Do not use d/c since d/c ≠ c/d.

...or could use these formulas

Absolute Error

$$> \Delta_{AE} = |d - c|.$$

- Relative Error
 - $> \Delta_{RE} = |(d c)/d|$ where $d \neq 0$.
- Relative Change
 - $> \Delta_{RC} = (c d)/|d|$ where $d \neq 0$.

Observations about the math

- \rightarrow Δ_{AF} / |d| = Δ_{RF} where d \neq 0.
- $ightharpoonup \Delta_{RC}$ yield the same unsigned number.
- Δ_{RC} gives direction (+ or -) regardless if d < 0 or d > 0.
- $ightharpoonup \Delta_{AE}$, Δ_{RE} , and Δ_{RC} approach zero as **c** approaches **d**.
- ightarrow Δ_{RE} and Δ_{RC} are dimensionless; Δ_{AE} has a dimension. Thus ...
- c and d must have the same units of measurement.

- Absolute Error
 - $\triangleright \Delta_{AE} = |d c|.$
- Relative Error
 - > $\Delta_{RE} = |(d c)/d|$ where $d \neq 0$.
- Relative Change
 - > $\Delta_{RC} = (c d)/|d|$ where $d \neq 0$.

"Objective" metrics – 3 types

1. Effectiveness (~ Quality)

How well results accomplished the stated purpose.

2. Efficiency (~ Quantity)

How well resources were used or consumed.

3. Appeal (~ Acceptance)

How well human preference was satisfied.

Example – effectiveness metric

- A 24-hour service was not available for 2 hours 10 minutes in a 30-day period.
- > Conforming = Total Nonconforming.
- $\Delta_{RE} = |1 (30*24 2^{10}/_{60})/(30*24)| = 1 0.996991 = 3.009 x 10^{-3} \approx 3/1000.$

Example – efficiency metric

- Desired (plan): Use \$0.075 per mile since hybrid fleet averages 40 mpg and fuel cost is \$2.40 per gallon plus 25% margin.
- Current (actual): The fleet billed \$12,000 for 140,000 miles or \$0.086 per mile.
- $> \Delta_{RC} = (0.086 0.075)/|0.075| = 0.011/|0.075| = +14.6%. Thus, the cost for fuel currently exceeds plan for the reporting period.$

Example (use d^c when d = 0)

> Given

d = No problems.

c = 3 defects in 1000 items.

> Metric using failure-space inputs

 $\Delta_{AF} = |0 - 3| = |-3| = 3$ defects.

$$\Delta_{RE} = |1 - 3/0| = ?$$
. Instead, try ...

Metric using success-space inputs

 $\Delta_{AE} = |1000 - (1000 - 3)| = |+3| = 3 \text{ def.}$

$$\Delta_{RE} = |1 - (1000 - 3)/1000| = 3/1000.$$

Great graph; why metric formulas?

Desired state = 2400 hr; Avg current state = 1300 hr)

Example What is the trend? (d = ?)

Trending without graphs

- All graphs used the same data!
- To test for a trend in discrete events without graphing, use the Laplace Test, a test statistic.

$$z = \left[\left(\left(\sum_{i=1}^{n} t_{i} \right) / n \right) - T / 2 \right] / T \sqrt{1 / (12n)}$$

- > t_i is the time from the start time to the time of the ith event.
- > n is the number of events.
- > T is the time from the start time to the end time of the observation period.

Graphs instead of metric formulas?

- Sometimes a picture is worth a 1000 words, and sometimes it can be misleading or confusing.
- When there is sufficient amount of data, do both:
 - > Plot the data
 - > Treat the data.

Types of effectiveness

Technical characteristics

Physical characteristics (e.g., size, shape) and functional capability. "On the drawing."

Operating characteristics

Non-physical characteristics being operating behaviors and outcomes (examples on next page). "Inferred by the drawing."

Operating outcomes & behaviors

Safety: Freedom from accident and loss	Usability : Human interfaces	Supportability and Serviceability: Service throughout the planned life cycle
Reliability: Likelihood of having an uptime (failure- free) state for a stated duration or load	Maintainability: Likelihood of returning to an uptime state due to maintenance or repair	Availability: Likelihood a repairable item has an uptime state; A = f (R, M)
Producibility: Ease and economy of producing or manufacturing	Affordability: Total cost of ownership and not only system acquisition cost	Disposability: Disassembly and disposal (environmental stewardship)

Example Pick one: "I need you to be..."

1. Effective

> Complete task "x" with no errors.

2. Efficient

> Produce "y" units per hour, cost.

3. Appealing

Check your work, support last minute changes, be team oriented, be safe...

How many metrics are needed?

• As the previous example illustrated ...

- > Performance is seldom if ever assessed by a single metric.
- Consider a dashboard, a combination of metrics, for your organization.

Benchmarking: Do your metrics ...

- Measure distance or length?
 - > **Distance** is between two points.

- > For management, the two states are:
 - What you want, and
 - What you have.
- > Length is a measure from zero.
 - olt does not compare states.
 - olt only measures one state.

Benchmarking: Do your metrics ...

• Focus on what should be measured, and not what can be measured?

- Objectively measure all areas of organizational performance?
 - > Effectiveness,
 - > Efficiency, and
 - > Human Appeal?

A management metric is <u>not</u> a...

- Statistic, a function of the sample data.
- Trend when it uses length (not distance).
- Figure of merit, aggregated quantities used to characterize performance and options.
- Risk measure, Prob. of Failure x Impact.
- Any single count or measure or just lengths.

Why? Because a **metric** is a function of two points (states) and not one.

Contact Information

Timothy C. Adams
Senior Engineer, Reliability
NASA Kennedy Space Center
Engineering & Technology Directorate
Technical Performance & Integration Division

Tim.Adams@NASA.gov

321-867-2267

